#### **EXERCISES** [MAI 5.5]

## **OPTIMIZATION**

#### SOLUTIONS

# **Compiled by: Christos Nikolaidis**

## A. Paper 1 questions (SHORT)

1. (a) a = 2, b = 20, c = 9, d = 8, e = 32

$$(b) \quad A = 12x - x^2$$

(c)  $\frac{dA}{dx} = 12 - 2x$  *A* is maximum when  $12 - 2x = 0 \Rightarrow x =$  $\Rightarrow$  length = 6m and width = 6m

2. (a) 
$$2x+2y=40 \Leftrightarrow x+y=20 \Leftrightarrow y=20-x$$

(b) 
$$A = x(20-x) = 20x - x^2$$

(c) 
$$\frac{dA}{dx} = 20 - 2x$$
  
 $20 - 2x = 0 \Leftrightarrow x = 10$   
 $\frac{d^2A}{dx^2} = -2 < 0$  so  $x = 10$  gives a maximum.  
It is a square of side  $x = 10$  and the maximum area is  $A = 100$ 

(d) The domain of A = x(20-x) is  $0 \le x \le 20$ .

At the endpoints x=0 and x=20, A=0

3. (a) 
$$xy=100 \Leftrightarrow y=\frac{100}{x}$$
  
 $P=2x+2y=2x+\frac{200}{x}$   
(b)  $\frac{dP}{dx}=2-\frac{200}{x^2}$   
 $2-\frac{200}{x^2}=0 \Leftrightarrow x^2=100 \Leftrightarrow x=10$   
 $\frac{d^2P}{dx^2}=\frac{400}{x^3}>0$  for  $x=10$ , so it gives a minimum.  
It is the square of side  $x=10$  and the minimum per-

It is the square of side x = 10 and the minimum perimeter is P = 40

(c) The domain of 
$$P = 2x + \frac{200}{x}$$
 is  $x > 0$ . When  $x \to \infty$  then P can be as large as possible!

#### 4. (a) **METHOD 1**

$$l + 2w = 60 \Leftrightarrow l = 60 - 2w$$

$$A = w(60 - 2w) = 60w - 2w^{2}$$

$$\frac{dA}{dw} = 60 - 4w$$

$$60 - 4w = 0 \Leftrightarrow w = 15$$
**METHOD 2**

$$w + 2l = 60 \Leftrightarrow w = 60 - 2l$$

$$A = l(60 - 2l) = 60l - 2l^{2}$$

$$\frac{dA}{dl} = 60 - 4l$$

$$60 - 4l = 0 \Leftrightarrow l = 15 \text{ and so } w = 30$$
(b) 
$$A_{\text{max}} = 450$$

5. let AB = x, AD = 
$$\frac{525}{x}$$
  
Cost C = 3(AD + BC + CD) + 11AB =  $\frac{525}{x} \times 3 + \frac{525}{x} \times 3 + 11x + 3x = \frac{3150}{x} + 14x$   
EITHER sketch of cost function,

min at x = 15, minimum cost is 420 (dollars)

OR using derivatives 3150

6.

7.

$$C'(x) = -\frac{3150}{x^2} + 14$$
$$\frac{-3150}{x^2} + 14 = 0 \Leftrightarrow x = 15$$
minimum cost is  $C = 420$  (dollars)

(a) (i) l = 24 - 2x (ii) w = 9 - 2x(b)  $B = x(24 - 2x)(9 - 2x) = 4x^3 - 66x^2 + 216x$ 

(c) 
$$\frac{dB}{dx} = 12x^2 - 132x + 216$$
  
(d) (i)  $\frac{dB}{dx} = 0 \Rightarrow x^2 - 11x + 18 = 0$   
 $\Rightarrow x = 2 \text{ or } x = 9 \text{ (not possible)}$   
Therefore,  $x = 2 \text{ cm}$ .  
(ii)  $B = 4(2)^3 - 66(2)^2 + 216(2) \text{ (or } 2 \times 20 \times 5) = 200 \text{ cm}^3$   
(a)  $x - 15$   
(b) Profit =  $(x - 15) (100\ 000 - 4000x)$   
 $= 100000x - 4000x^2 - 1500\ 000 + 60\ 000x = 160\ 000x - 4000x^2 - 1500\ 000$ 

(c) (i) 
$$\frac{dP}{dx} = 160000 - 8000x$$
  
(ii)  $160000 - 8000x = 0 \Leftrightarrow x = \frac{160000}{8000} \Leftrightarrow x = 20$ 

(d) Books sold = 
$$100\ 000 - 4000 \times 20 = 20000$$

8. (a) 
$$D = \sqrt{(x-5)^2 + (2x)^2} = \sqrt{x^2 - 10x + 25 + 4x^2} = \sqrt{5x^2 - 10x + 25}$$

(b) 
$$\frac{\mathrm{d}S}{\mathrm{d}x} = 10x - 10$$

(c) 
$$\frac{\mathrm{d}S}{\mathrm{d}x} = 10x - 10 = 0 \Leftrightarrow x = 1$$

[using table of signs or 2<sup>nd</sup> derivative test we easily see it gives a min]

- (i)  $S_{\min} = 20$
- (ii)  $D_{\min} = \sqrt{20} ~(\cong 4.47)$
- (iii) P(1,2)

### Notice :

We can also use the GDC graph for the function  $D = \sqrt{5x^2 - 10x + 25}$ It has a minimum at (1, 4.47)

- Hence (i) The minimum distance is D = 4.47
  - (ii) The closest point is (1, 2)

## 9. METHOD 1

(a) 
$$D = \sqrt{(a-3)^2 + (a^2-0)^2} = \sqrt{a^2 - 6a + 9} + a^4 = \sqrt{a^4 + a^2 - 6a + 9}$$

(b) (i) 
$$\frac{dS}{da} = 4a^3 + 2a - 6$$
  
(ii)  $\frac{dS}{da}\Big|_{a=1} = 4 + 2 - 6 = 0$ 

Either by a table of signs.

| а                                 |   | 1 |
|-----------------------------------|---|---|
| $\frac{\mathrm{d}S}{\mathrm{d}a}$ | — | + |

So minimum

 $\mathbf{OR}$  by the 2<sup>nd</sup> derivative test

 $S'' = 12a^2 + 2$ , At a = 1 S'' = 14 > 0 so minimum

- (i) The point is  $(1, 1^2)$  i.e. (1, 1)
- (ii) The minimum distance is  $D = \sqrt{5} (\cong 2.24)$

#### Notice :

We can also use the GDC graph for the function  $D = \sqrt{(a-3)^2 + a^4}$ 

It has a minimum at (1, 2.236)

- Hence (i) The point is  $(1, 1^2)$  i.e. (1, 1)
  - (ii) The minimum distance is D = 2.24

10. (a) 
$$f(x) = g(x) \Leftrightarrow x^2 = 4x - x^2 \Leftrightarrow 2x^2 - 4x = 0 \Leftrightarrow 2x(x-2) = 0 \Leftrightarrow x = 0$$
 or  $x = 2$   
Hence,  $a = 2$   
(b)  $L = 4x - x^2 - x^2 = 4x - 2x^2$   
(c)  $\frac{dL}{dx} = 4 - 4x$   
 $4 - 4x = 0 \Leftrightarrow x = 1$   
 $\frac{d^2A}{dx^2} = -4 < 0$ , so  $x = 1$  gives a maximum.  
 $L_{\text{max}} = 2$   
11. (a) Base =  $2a$ , Height =  $f(a) = 80 - a^4$ 

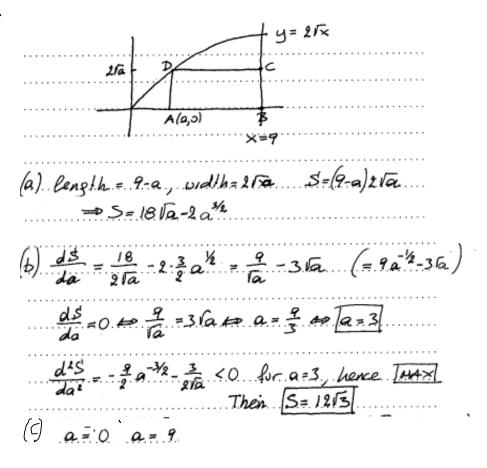
$$S = 2a(80 - a^{4}) = 160a - 2a^{5}$$
(c) 
$$\frac{dS}{da} = 160 - 10a^{4}$$

$$160 - 10a^{4} = 0 \Leftrightarrow a^{4} = 16 \Leftrightarrow a = 2$$

$$\frac{d^{2}S}{da^{2}} = -40a^{3}. \text{ For } a = 2, \frac{d^{2}S}{da^{2}} < 0, \text{ hence max}$$

$$S_{\text{max}} = 256$$





# **B.** Paper 2 questions (LONG)

13. (a) 
$$h(2) = 24(2) - 2.4(2)^2 = 48 - 9.6 = 38.4 \text{ cm}$$
  
(b) (i)  $\frac{dh}{dw} = 24 - 4.8w$   
(ii)  $24 - 4.8k = 7.2 \Rightarrow k = \frac{24 - 7.2}{4.8} = 3.5 \text{ weeks}$   
(iii) maximum height when  $24 - 4.8w = 0 \Rightarrow w = \frac{24}{4.8} = 5 \text{ weeks}$   
height  $= 24(5) - 2.4(5)^2 = 60 \text{ cm}$   
(c) 70 days = 10 weeks  
 $h(10) - 24(10) - 2.4(10)^2 - 0$   
(height of zero indicates that the daffodil is lying on the ground)  
14. (a)  $2x + y$   
(b)  $2500 = 2x + y \Rightarrow 2500 - 2x = y$   
(c) (i) Area  $A(x) = xy = x(2500 - 2x) = 2500x - 2x^2$   
(ii)  $A'(x) = 2500 - 4x$   
(iii)  $A'(x) = 0 \Rightarrow 0 = 2500 - 4x \Rightarrow 4x = 2500 \Rightarrow x = 625$   
(iv)  $A(x) = 2500x - 2x^2$   
 $A(625) = 781250 \text{ m}^2$   
15. (a)  $AE^2 + h^2 = 8^2 \Rightarrow AE = \sqrt{64 - h^2}$   
(b)  $V = \pi v^2(2h) = 2\pi h(AE^2) = 2\pi h(64 - h^2) \text{ cm}^3$   
(c) (i) From (b)  $V = 128\pi h - 2\pi h^3$   
 $\frac{dV}{dh} = 128\pi - 6\pi h^2 = 0 \Rightarrow h = \sqrt{\frac{64}{3}} = \pm 4.62 \text{ cm} (3 \text{ s.f.})$   
Test to show that V is maximum when  $h = 4.62$  (either table or V'' test)  
(ii)  $AE^2 = 64 - h^2 = 64 - \frac{64}{3} = \frac{128}{3}$   
 $V_{max} = \pi r^2(2h) = \pi \left(\frac{128}{3}\right) \left(2\left(\sqrt{\frac{64}{3}}\right)\right) = 1238.22... = 1238 \text{ cm}^3 (\text{nearest cm}^3)$   
16. (a)  $V = x^2h$   
(b)  $A = 2x^2 + 4xh$   
(c)  $1000 = x^2h \Leftrightarrow h = \frac{1000}{x^2}$   
(d)  $A = 2x^2 + 4x \left(\frac{1000}{x^2}\right) = 2x^2 + \frac{4000}{x} = 2x^2 + 4000x^{-1}$   
(e)  $\frac{d4}{dx} = 4x - 4000x^{-2}$   
(f)  $4x - 4000x^{-2} = 0 \Rightarrow 4x^3 = 4000 \Rightarrow x^3 = 1000 \Rightarrow x = 10$ 

(g) 
$$A = 600$$